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The multi-layer exchange equations for gravitationally driven flows between two 
basins with stable Boussinesq type of stratification in discrete layers, specified far 
upstream on either side of a connecting strait, result in a hydraulic control condition 
that must be satisfied at the narrowest part of the contraction, the control point. If one 
stagnant layer is present at the control point, the control condition that applies to all 
layers collectively may be separated into two such conditions that apply independently 
to two groups of layers going in opposite directions separated by the stagnant layer. 
Such bidirectional flow regimes exist if the structure of the prespecified density profiles 
permits each of the opposing groups to vertically reduce their thickness by the ratio 2/3 
relative to their upstream thicknesses, leaving space for the stagnant layer to protrude 
through the contraction. Under these restrictions, the bidirectional flow is controlled 
by the fastest propagating wave mode and the stationary solution then relies on the 
superposition of two previously known unidirectional self-similar flow regimes that are 
completely decoupled. Techniques for their numerical computation are presented. The 
transition into loosely coupled and fully coupled flow is discussed. The decoupling 
principle also applies when several non-adjacent stagnant layers are simultaneously 
present at control in which case multiple groups of decoupled layers flow in alternating 
directions. 

1. Introduction 
Beginning with Stommel & Farmer (1952, 1953) continued studies bear witness to 

the importance and intricacies of the two-layer exchange problem. One reason is that 
in many practical instances, for example ventilation of estuaries, two-layer ap- 
proximation serves as an adequate idealization. Typical cases could be small-scale 
coastal inlets that are subjected to over-mixing so that densimetrically homogeneous 
water bodies are formed on either side of a connecting strait. In places where such 
idealized homogeneous conditions do not prevail, the two-layer approximation may be 
poor and multiple layers with discrete densities provide a more realistic description. As 
the number of strata increases, continuous stratification is the limiting result. This 
enhanced realism to describe the stratification is, however, not accompanied by 
available methods to compute the resulting flow. For the few cases with known 
solutions, mainly with prescribed flow in one section, the mathematical treatment is 
naturally quite different compared to the discrete case. Early contributions were 
presented by Craya (1951) followed by Long (1953, 1954, 1955). Killworth (1992) 
provided a procedure to facilitate the conversion of the continuous equations to the 
corresponding discrete multi-layer formulation. He also treated bidirectional flows for 
continuously stratified profiles and showed that when the external (barotropic) mode 
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is eliminated, the interface between the opposing flows will be flat. This situation does 
not occur in natural strait exchange flows where the external mode plays an integral 
part in the flow adjustment (e.g. Stigebrandt 1990). 

The first work on multi-layered flows which presented the control criterion in the 
form of a determinant equation (Benton 1954) applies to bidirectional flows. Over the 
following decades the focus has mainly been on unidirectional multi-layered flow with 
prespecified velocities in an upstream section (e.g. Su 1976; Lee & Su 1977; Baines 
1988). These known upstream velocities provide a solid starting point from which 
computational schemes may be integrated. Since these schemes rely on iterative 
division with the upstream velocities, this advantage is lost if the boundary condition 
involves fluid at rest, as is the case when fluid is withdrawn form a large reservoir. 

Multi-layered selective withdrawal was first treated by Wood (1968). Starting with 
two flowing layers surrounded by stagnant layers, he found a similarity solution with 
a height reduction factor (i.e. the ratio between the layer thickness at the contraction 
and the specified thickness of the same layer far upstream) of 2/3 and one control 
located in the narrowest section. This could be generalized to cover a continuously and 
stably stratified flow. Binnie (1972) used Hugoniot’s method to produce the same 
results for two-layer flow but with much simplified algebra. Benjamin (1981) verified 
this result by using the same momentum transfer function as Benton (1954), and 
proved that the momentum transfer per unit span (flow force) integrated over the 
active layers is maximal for flow subjected to control. A review of laboratory studies 
has been provided by McClimans (1 990). 

The present paper treats the case where there is no sill and the bottom of the 
connecting channel is horizontal. The problem considered is mainly the same as studied 
by Stigebrandt (1990), which was suggested by the often occurring practical situation 
when the ventilation of coastal embayments comes into focus: a sea with slowly 
varying density surfaces including the interface to the atmosphere is connected to an 
embayment by a constricting strait. 

The presentation is confined to achieving a theoretically sound method to compute 
quasi-stationary exchange through a connecting strait with varying width, located 
between two sufficiently large bodies of stably stratified water. The exact solutions will 
be limited to the cases when one (or more non-adjacent) stagnant layer(s) is (are) 
present at the maximal contraction. The proposed method is based on self-similar 
solutions. Even though it seems potentially capable of handling a sill that coincides 
with the maximal contraction, this represents a more complicated case in comparison 
to a flat bottom (Farmer & Armi 1986). Therefore the presentation will focus on the 
latter case. The flow at the strait should comply with the control criterion and should 
be matched through hydraulic jumps with the prespecified downstream stratification. 
A sketch is provided in figure 1. 

An outline of this paper is that first (92) the basic shallow water equations (i.e. the 
pressure field is hydrostatic everywhere, jumps possibly excepted) are reviewed and 
from these the control criterion is derived. The derivation up to equation (12a, b) is 
similar to that of Benton (1954). The various forms the control condition takes when 
a stagnant layer is present at the control point are given in $3.  A decoupling property 
of the control criterion is then examined, on which the formulation of the stagnation 
conditions for self-similar decoupled flows in 94 is based. The results are discussed in 
$ 5  followed by a summary. 
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FIGURE 1 .  Sketch of the problem formulation. The different stratification in the reservoirs has 
been indicated by connecting the isopychs through the contraction. 

2. Problem formulation and basic equations 
The exchange of water through a contraction (with given geometric properties) is a 

function of the density fields on either side (for example in the interior of the 
embayment and in the external open sea) and the sea level difference. It is subsequently 
assumed that the variation in time of the external baroclinic and barotropic forcing is 
so slow that the flow could be considered as quasi-stationary. This means that the 
basins must be sufficiently large that the response time of the embayment to water 
exchange is slow in comparison to travel time of the water parcels exchanged (Wood 
1970). For the specified density distribution one would want to compute the resulting 
flow for as wide a range of the barotropic component as possible. This part of the flow 
is a function of sea level difference between the basins, and leaves two alternative but 
equally valid perspectives. Either one regards the barotropic flow as specified so that 
the sea level difference adjusts to produce this flow, or one regards the sea level 
difference as known and determining the barotropic flow. Keeping in mind the 
assumption of quasi-stationary timescales, the latter perspective will be chosen here. 
The sea level difference between the basins will be denoted da (figure 2) in accordance 
with Stigebrandt’s (1990) nomenclature, and it will be retained as a parameter free to 
vary within the constraint that the external Froude number is considerably less than 
unity so that a rigid-lid approximation applies. Hydraulic jumps and/or separations 
may occur downstream of the maximum contraction. The stratification is assumed 
stable on either side of the strait and is represented by n layers spanning the same 
density range from pl(top) to ,on (bottom). It is tacitly assumed Boussinesqian in the 
sense that 

(1) 0 < P n  -P1 4 ;(Pfl +PA.  

It is further assumed here that the topography of the connecting channel is sufficiently 
long and smooth that the hydrostatic assumption (i.e. the shallow water equation) is 
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FIGURE 2.  (a) A sketch of the streamlines along isopychs of a seven-layer flow regime with the fourth 
layer stagnant. The jumps are indicated. (b) The infinitesimal sea level elevation (da) around the 
narrowest part of the contraction is shown magnified in the vertical direction. 
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FIGURE 3. Geometric convention and nomenclature. 

valid. Cross-channel velocities are assumed uniform (no occurrence of vena contracta) 
and lateral accelerations negligible. The walls are assumed vertical but this assumption 
will be relaxed later. Viscous and other frictional effects are neglected entirely. This 
may be unrealistic in long narrow contractions, since friction acts to reduce the 
available area by formation of lateral boundary layers (Wood 1970; Armi & Williams 
1993). Rotational effects are not discussed. The interested reader is referred to Gill 
(1977) for single-layer flow and Dalziel (1991) for two-layer flow. The density po, 
denoting the density of a possible atmosphere on top of the surface layer, is set to zero. 

With the notation in figure 3 the momentum equation for the ith of a total of n +  1 
layers (the zeroth layer denotes the atmosphere) may be written using the comma 
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notation for the partial derivatives with regard to the horizontal (x) and time ( t )  
coordinates if a hydrostatic pressure field is assumed: 

Ui and pi denote the homogeneous velocity and the density of the ith layer respectively. 
Further the Apj = (pj -lojpl) are positive quantities, so that the stratification is stable. 
The height relative to an arbitrary datum of the lower interface of the ith layer is 
denoted hi (positive upwards), thereby denoting the free surface as h, and the bottom 
contour h,. The latter is assumed constant. The small sea level deviation from the 
horizontal will, in all practical cases, be small in comparison to the height of the total 
water column, and thus the sum of the thicknesses of all layers may be regarded as 
constant in the horizontal. The sea surface is thus regarded as geometrically flat (i.e. 
its deviation only negligibly affects the vertical position of the other layers) but it still 
permits a significant barotropic mode by affecting the pressure profiles. This is 
essentially a rigid-lid assumption. Volume conservation of an incompressible fluid 
requires that 

where Wi denotes the width (assumed known) and H i  the thickness of layer i. The 
geometry (figure 3) gives for the layer thicknesses 

w. Hi, t = (Ui K. Hi), S' (3) 

Hi = hipl - hi. (4) 

Thus there are two equations for two unknowns ( Ui and Hi or hi-J for each layer and 
together with boundary conditions (i.e. the known densities and layer thickness of the 
two large reservoirs connected by a channel) the solution should be possible to obtain 
by integration. However, the inherent nonlinearities are such that even if the problem 
is simplified to steady solutions and the number of layers to two (meaning that each 
reservoir has two layers of densities p1 and p2 with different thicknesses), the solution 
is not trivial, as studies spanning almost four decades substantiate. 

In the steady state, taking the measurements in a coordinate system that moves with 
the phase speed of any internal long wave (with infinitesimally small amplitude), the 
time derivative term in (2) may be dropped, and integration gives the Bernoulli 
expression for the velocity in the ith layer: 

2 

p , i U : + g C  Ap,h,-, =constant. 
,=1 

( 5  4 

If Ui = 0 in one layer, such a stagnant layer has no proper streamlines and ( 5  a )  reduces 
to yield a hydrostatic pressure relationship. Any line in a stagnant layer - including its 
interfaces with the adjacent active layers - is then a potential streamline and equation 
( 5 a )  is still valid along those. Expanding the Apj into (p j -p j -J as defined above, an 
alternative formulation is 

i-1 

,u i~U%-gp,h ,+gC , ~ ~ H ~ + g p ~ h , - ~  = constant. ( 5  b) 
j=1 

In (5b)  the summation term denotes the additional hydrostatic pressure of the i-I 
layers on top of layer i, which together with the term gp, h, equals the total hydrostatic 
pressure, P, ,  on top of the ith layer. The integration constants can be determined by the 
fact that in the upstream reservoir the velocity Ui is negligibly small and the H j  or hj  
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are known. A common procedure (Killworth 1992) is to introduce a Bernoulli PE- 
function Bi, representing the potential energy for each layer where 4 is the pressure on 
top of the ith layers: 

A constant atmospheric pressure may of course be added to this, but since it will be 
assumed that it does not vary over the contraction, it could be considered as shifted 
over to be contained in the right-hand side of (5a) and (5b). The latter equation then 
simplifies to be constant along the layer interfaces: 

Bi = Pi +gpi hi-l .  (6) 

pitUf + Bi = constant. (7 4 
The flow is thus accelerated from higher B-values to lower. If the atmospheric density 
is approximated to be zero and the reference datum is set to coincide with the rigid lid, 
then the Bernoulli PE-function of the top layer is 

B, = p1 g da. (7 b) 
Here da is the sea level difference relative to the datum. Since it enters the Bernoulli PE- 
function of all layers equally, it may be replaced by specifying the net volume flow 
(Armi 1986). In the present formulation, it will be retained, since doing so facilitates 
the calculation of the exchange flow. In pursuing the steady solution, the time- 
derivative term in equation (3) is set to zero: 

Ui, Hi Wi = - Ui(Hi Wi), x. 

This expression for Ui,x  is inserted into equation (2). Assuming steady state, the 
expanded derivative on the right-hand side of equation (8) becomes 

i 

j = l  

For vertical sidewalls, the narrowest section for all layers coincides, 

w,,, = 0 

for all i simultaneously. Other arrangements of sidewalls that meet this requirement 
could be included in this simplification, provided at least that the channel with constant 
centreline depth is symmetric about its mid-depth plane, which is the condition found 
by Dalziel (1992) for two-layer flow. 

Substituting Hi from (4) into (9) yields 

Introducing layer Froude numbers = [U,"/(gHz)]1/2,  expanding equation (1 1) for the 
(i+ 1)th layer and taking advantage of the recursive structure (i.e. that the left-hand 
side of (1 1) for layer i is identical to the left-hand side of the same equation for layer 
(i - 1) plus the term Apz ht-l ,  .) one gets 

(124 

Collecting the terms for the respective layers, noting that h,  is zero since the bottom 
is assumed horizontal (or the contraction coincides with a sill), equation (12a) renders 
n equations, one for each interface for the n unknowns h,, k = 0, 1,2, . . ., n - 1, with the 

PZ+l F?+l(h%, 2 -A,+,, XI = Pz FXhz-I, 5 - hz, x )  + b Z + l  ht, 5' 
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right-hand sides equal to zero. This set of equations has the trivial solution 
hk,  = 0 - meaning a non-control case - or the determinant equation must be satisfied : 

0, ... 

0, . ) .  

This determinant equation is equivalent to the one derived by Benton (1954), but 
derived more similarly to that of Baines (1988) who showed the relation between this 
type of derivation and the one produced by analysis of small linear perturbations of 
equation (2) in steady state. Only the numbering of the layers (which goes in the reverse 
direction, i.e. bottom up for these authors), the sign of the ApJ, defined as a negative 
quantity by Benton (1954), and the sign of the super- and sub-diagonal elements is 
reversed. Changing the signs of all elements only makes the determinant change sign 
if the number of rows and columns, n,  is odd; if n is even, the value remains the same 
(Aitken 1958; p. 37). As may be proved by induction, it also holds that reversing the 
signs of the diagonal elements in a tridiagonal determinant only changes the sign of the 
determinant if n is odd, otherwise not. Therefore (12b) is identical to the control 
criterion derived by Benton (1954) and Baines (1988). 

From general theory of layered systems (e.g. Gill 1982), it is known that (12b) must 
have exactly n pairs of solutions, each corresponding to the velocity of a coupled long 
internal wave with infinitesimal amplitude displacement of the layer interfaces and 
going in either direction. If these solutions are real-valued, the flow is neutrally stable 
(Baines 1988). When approaching the constriction their passage may be counteracted 
by the advective flow (Benton 1954; Baines 1988). For a control to take effect in the 
coordinate system following the internal wave, at least one of these long internal wave 
speeds must be zero. Relative to the corresponding coordinate system, the velocities in 
the Froude numbers, 4, in (12h) may be replaced by ones measured relative to the 
coordinate system of the topography and this will be considered the case from this 
point on. 

In (126) A p ,  normally dominates over p1 F:. The physical interpretation is that the 
slope of the sea level, in order to balance a slope of an internal interface so that (12b) 
is satisfied, needs only to be an order of magnitude smaller. This is the essence of the 
rigid-lid approximation. If the determinant in (12b) is expanded into cofactors along 
the first row and the less important term is discarded, one obtains a new determinant 
equation where the determinant only differs from the one in (12b) in that the first row 
and column are omitted. 

3. Decoupling of the control criterion by a stagnant layer 
In order to better understand the mathematical properties of equation (12b) it is now 

convenient to introduce a simplification. This is done only to make the point more 
clearly. The following line of argument applies exactly analogously to the original more 
complicated determinant in (1 2b) that allows for arbitrary density jumps between the 
layers. The layers are now regarded as discrete representations of a continuously 
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stratified liquid and one may choose to subdivide the layers so that all Apj 
( j  = 2,3, . . . , n) become equal (= Ap). This is analogous to introducing density 
coordinates (Killworth 1992). F o r j  = 1, Apl denotes the density difference between the 
upper layer and the atmosphere. All F ;  in (12b) divided by Ap will be transformed into 
their densimetric counterparts : 

Insertion into (12 b) together with the rigid-lid assumption gives a (n - 1) x (n - 1) 
determinant equation that specifies the control criterion for the n layers (with n - 1 free 
interfaces) and is thus valid under the assumptions made of equal layer density 
differences, zero density on top of the upper layer and the rigid-lid approximation. 

Assuming further that a stagnant layer exists at the narrowest part of the 
contraction, the Froude number of the stagnant layer will be zero and the determinant 
may be separated into the product of two smaller determinants. For clarity this can be 
exemplified for the case of seven layers. In order to adapt the determinant to numerical 
computations, the signs of all elements may be reversed which, for the above-given 
reason does not change the zeros of the determinant equation (Aitken 1958): 

(13) f; = J-:/(AP/Pi). 

l-f,'-f,', .f,", 0 1 -.f& .f& 0 

f," l-,ff-f& f," . .ff, 1 -,fi-fi, .g7 
0, ,f,", 1 -.fi 0, , fZ3 1 -.c -.f? 

= 0. 

(14) 

= 0. (15) 
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which it is possible to compute the flow will be limited by the number of layers used 
for resolving the stratification. 

This type of decoupling of stagnant layers at a control in a contraction with vertical 
sidewalls has been observed in experiments both for discrete and for continuous multi- 
layer exchange flow (L. Armi, personal communication). 

It may also be pointed out that the diagonal values adjacent to the stagnant layer are 
of type (1 --f:)-factors, unlike the other diagonal elements that are of the form 
(1 -f,"-,f,",,). This is a reflection of the appearance of the first row in (12b) which 
borders the stagnant liquid above the top layer, before the various approximations 
leading to (14) are applied. The slight but important differences of the two control 
criteria that correspond to the two determinant factors in (1 5) must be thoroughly 
observed. When a group of active layers is delimited by stagnant layers both on top and 
beneath, this situation is called the intermediate control condition case. The decoupling 
following from the assumption of a stagnant layer also means that it is possible that 
solutions exist where the trivial solution of hl ,z  = 0 for all j above or beneath the 
stagnant layer, or between them for the intermediate case. This means that all 
acceleration is taking place upstream of the contraction. This latter case will be called 
non-control solutions which are characterized by exactly horizontal slopes of the 
interfaces as they pass the control point at the minimum width section. 

4. Self-similar solution techniques for decoupled groups of layers 
Beginning with solving simpler cases first, the assumption will be retained that the 

Bernoulli PE-functions with regard to the density for the two basins are restrained such 
that the two curves for the surface density intersect only when there is no sea level 
difference between the reservoirs. When there is a net sea level difference (figure 4a, b) 
the intersection point will be shifted upward or downward depending on the sign of the 
difference. This restriction is necessary in order to differentiate from the intermediate 
cases when there are more than two groups of layers flowing in opposite directions. 

The focus here will thus be on only two groups of layered solutions, and this case 
seems to be the one most represented in real estuaries. This assumption also means that 
the density distribution is such that a unidirectional flow will occur when there is no 
net sea level difference between the two basins. The top layer then stagnates and all the 
other layers move in the same direction driven by their baroclinic potential. If there is 
a small surface elevation, du, then the intersection point of the two B-profiles will be 
shifted downward to a new p-value. In a layered approximation this will occur for a 
set of discrete da-values that will make one particular layer stagnant at one time (figure 
4b). The du-value that makes layer i stagnant will be denoted da(i). It is also convenient 
to introduce the labels E (exterior), I (interior) and S (strait) for the site of the pressure 
profiles; these will be used as superscripts when no ambiguity is caused. For simplicity 
it is assumed that the rigid lid coincides with the surface interface with the atmosphere 
so that the surface elevation, daE, is defined to be identically zero at all times. The 
corresponding elevation in the interior basin, da', will serve as an independent 
parameter, which together with the prespecified density profiles, will determine the flow 
in the contraction. This means that cases with a net flow through the strait are included. 

The objective with this set-up is to compute the exchange through the contraction, 
which essentially means determining the dah7 and the Hf from which the velocities and 
the volume flow may be calculated as a function of da'. Last, the convention is that the 
density gradient is according to figure 4(a,  b) with denser water closer to the surface in 
the exterior basin, but the analysis could be equally well performed for inverted 
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B' (sea level difference = da') 

J f (nominally) Demityof 

stagnant layer 

Density 

1 
1 2 3 4 5 6 7 

Layer number 

FIGURE 4. (a) The Bernoulli PE-function with regard to density for the interior basin (thick line) and 
the exterior basin (thin line). In order to restrict the solution to just two groups of active layers these 
only intersect for the topmost layer density. The broken line marks the vertical parallel shift of 
the B'-curve by the constant pressure plgdur. The new intersection point gives the density of an 
infinitesimally small layer that must stagnate since it lacks Bernoulli-potential to flow. Since there 
may be other adjacent sections that also stagnate, this is called the nominally stagnant layer. (b) As 
(a) but for the discrete case where the stratification on both sides has been approximated by a 
subdivision into seven layers with equal density difference between adjacent layers. The increase of 
the Bernoulli PE-function when an additional sea level of du' is maintained in the interior basin is 
marked. This is sufficient to make the third layer stagnant and is denoted d d ( 3 ) .  
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estuaries. The chosen conventions make du' a positive quantity. The flow direction is 
then I - t E  for the layers above the one labelled i and in the reverse direction for the 
bottom layers. The Bernoulli PE-function for the stagnant ith layer is then 

i -1 i-1 

j=1 j = 1  
Bf = gp, dax(i) + c gp, Hf -gpi C H:. (16) 

In this equation the superscript X is either I (interior) or E (external), and a sufficient 
condition for the ith layer to be stagnant is 

B! = BE 2 '  (17) 

With the daE(i) defined to be zero, equation (17) gives the cia1(;) value that makes the 
ith layer stagnant. Since a jump does not conserve the total energy (ordinary Bernoulli 
functions) for the active layers that it is composed of, it must be emphasized that in the 
present analysis these functions are never extended across a jump - not even across the 
contraction - for any active layer. 

A necessary condition for these decoupled flows to exist is that the two groups of 
active layers leave space for the layer j to protrude into the contraction for the 
particular da(j)-value that makes it stagnant. For the fastest control mode, with layer 
thickness reduction 2/3, 

must hold. H is here the total depth. When the equal sign applies, the two groups of 
layers barely touch at the contraction; this could be called an osculating or 'kissing' 
solution (L. Armi, personal communication). 

For simplicity the superscripts are temporarily dropped for the layer thickness at the 
sound. Let H, (= daJ- das) denote the drop of sea surface to the contraction. A self- 
similar solution is now assumed with the height reduction factor A, that is the ratio 
between the vertically contracted (at the constraint) and the uncontracted (far 
upstream) layer thickness. Equation (7 a) gives the velocities of the upper layers : 

(hF- h;-J < H/2 (18) 

i - I  

U i  = 2@, gH,  - Apg( 1 - A )  C (i - j )  Hj)/p, .  (19) 

A demonstration of the nature of equation (19)-type self-similar solutions, and their 
capacity to pass through a contraction control by satisfying the surface control 
criterion, will be performed for a set of n active layers. With this number of active 
layers, the condition that the (n+ 1)th layer is to stagnate gives that 

j=1 

12 

This determines the value of H, and, maintaining the rigid-lid assumption, theft for 
the active layers (i = 1,2,3, . . ., n)  may be computed: 

i-1 1-h f f = 2 ~ ( 2 jHi+l-j - C ( i  - j )  Hi 
A j=1 3=1 

This set offl  is now supposed to satisfy the surface control criterion, at least for the 
solution found by Wood (1968) and Benjamin (1981), that is for h = 2/3. Thus theft 
of equation (21) are substituted into a surface control criterion of the type given as the 
first determinant of the left-hand side in (15). The numerical solutions, found by an 
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FIGURE 5.  Graphical display of the A-roots that satisfy the coupled control conditions (equation 
(15b)) both for the surface and the bottom groups of layers. Two different reservoir distributions are 
computed, one with unequal layer height, the other with equal layer height (ix. linear density 
distribution) so that four cases (a-d) ensue. There are as many roots as there are layers. The 
corresponding roots are connected graphically from top to bottom in this order: (a) the roots of 
surface control condition, unequal layer height; (b) the roots of surface control condition for equal 
layer height; (c)  the roots of bottom control condition for equal layer height; (a) the roots of bottom 
control condition for unequal height. The roots associated with the surface are shown solid, the others 
dotted. It is evident that for linear stratification the roots are close, if not identical. For unequal layer 
height the roots differ markedly. 

interval-splitting numerical scheme, are presented in figure 5 for cases of both equal 
and unequal layer heights. The known solution ( A  = 2 / 3 )  is reproduced, but 
interestingly other solutions occur as well. In fact, there are as many self-similar 
solutions as there are active layers. This would mean that a complete set of long 
internal waves associated with a critical condition at each interface is found. Each of 
these could be controlled at the narrowest part of the contraction depending on the 
downstream reservoir stratification. The corresponding height reduction factors seem 
to be confined to a narrow band. Except for the h = 2 / 3  root, it holds approximately 
that 0.9 < h < 1. Note that with the assumptions made H,, must be equal to or less than 
da. This is a condition that must be observed in particular when the stratification in the 
reservoirs becomes similar. 

Analogously the same self-similar approach can be attempted for a group of n active 
layers beneath a stagnant one on top and above a flat bottom. Since the density of the 
stagnant layer now differs only by Ap from the top active layer, p1 in (19) now should 
be replaced by Ap.  If the active layers are renumbered to run from 1 to n, the geometry 
gives 

n 

j=1 

H, = (1 - A )  c Hj. (22) 

Equation (21) will be modified as the rigid-lid assumption no longer holds and the 
displacement H, is, in this case, not negligible: 
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FIGURE 6. Sketches of streamlines along isopychs for a suite of decoupled solutions with seven discrete 
layers. The actual vertical height reduction at  the strait contraction ( 2 / 3 )  is the essential attribute 
depicted. Each of the figures corresponds to a sea level elevation that makes one layer a t  a time 
stagnant. 
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Again, there are as many solutions as there are active layers. For the case with equal 
layer heights, these roots coincide within the numerical resolution with the roots found 
for the surface case, but for other geometrical thickness distributions there are no 
coinciding A-roots except for the 2/3 solution, see figure 5 .  This could be expected from 
the seemingly symmetric arrangement with a flat top and bottom respectively in the 
two cases, but even if the layer order is reversed to be mirror-symmetrical, the roots 
that satisfy the surface and the bottom control criteria will still be slightly, but yet 
significantly, deviating. A suite of exact decoupling solutions is presented in figure 6. 

As in the case with an intermediate group of layers surrounded by a stagnant layer 
both on top and below, the local Froude numbers may be computed showing the same 
properties with regard to the height reduction factor as above: 

j=1 / I  L l - 1 .  3 = 1  

In fact, the rigid-lid assumption could be relaxed. If the atmosphere had, instead of the 
assumed zero density, a density that is Ap less than the density of the top layer, (24) 
would be the adequate equation for the surface layers. The assumptions of negligible 
atmosphere density, Boussinesqian density distribution (equation (1)) and a rigid lid 
are thus not independent. From any two of these assumptions, the third follows. 

5. Discussion 
The volume transport through the strait that is sought may thus be completely 

determined by the shallow water equations and be in accordance with the control 
criterion and in harmony with the downstream conditions for the discrete number of 
sea level differences that fulfil the condition given in (18). In an application one distinct 
advantage is that the solutions found are exact and there is no dependence on any 
(semi-) empirical parameters. The exchanged density-determining properties (salinity 
and temperature) that in timescales longer than the assumed quasi-stationary scale will 
change the density profile of the basins, may be computed as the response of the basins 
to the exchange (e.g. Stigebrandt 1990; p. 609). The disadvantage is that the 
computation is only possible for a limited number of sea level differences or 
equivalently for a set of net barotropic volume flows, maximally as many as there are 
layers. There are two ways to expand the applicability. 

The first is self-evident. For layered approximations of continuous profiles one is free 
to choose the number of layers. A coarse subdivision gives faster computation at the 
expense of the resolution and vice versa. A sensible compromise is to arrange for the 
osculating solutions mentioned earlier. 

The second method focuses on the dynamics of the shearing interface in a flow 
situation such that the sea level has been slightly adjusted so that a formerly stagnant 
layer has just begun to flow. Still addressing the case with only two groups of active 
layers, these could now be called ‘loosely coupled’. Consider now what happens 
if the densities of all the layers above the upper shearing layer are replaced by this 
layer’s density (denoted p’) and simultaneously the sea level is lowered by a positive 
quantity da’ 

da+ = c i P+ - P j )  Hj/P+, 
where the summation should be taken over all the layers above the shearing interface. 
The dynamics of the interface cannot be changed by this transformation, at least not 
before it reaches the possible jump after passing through the control point. The flow 
situation for the shearing layers remains the same. In particular this applies at the 
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minimum-width control point. Likewise, all the layer densities below the lower 
shearing layer may be replaced by the same density as this layer without changing the 
flow regime, with the possible exception that the jump after passing the control could 
be affected. Between the jumps, the two-layer dynamics are approximately the same as 
for the multi-layer situation they have replaced. This means that the loosely coupled 
flow cases may be approximately computed relying on the well-established two-layer 
theory (Armi 1986; Armi & Farmer 1986) and the transformation is valid for the whole 
continuous set of sea level differences da between two consecutive exact solutions. The 
transitions between the exact solution and these approximate solutions are smooth, 
since the same transformation applied to layers above the stagnant one, and the 
adjusted sea level will be lowered to become exactly horizontal on top of a 
homogeneous layer of the stagnant layer's density. 

Such a two-layer approximation may be extended to fully coupled flow cases that do 
not fulfil (18). One complication is then, however, that more than one layer may 
become stagnant, increasing the density jump by a multiple of A p  over the shearing 
layers. This not only means that more than one two-layer approximation may have to 
be computed before finding the corresponding multi-layer self-similar solution with a 
shearing interface height at the control that matches the stagnation condition 
requirement on the Bernoulli PE-functions. It also means that progressively, as the 
density distribution in the two reservoirs becomes closer to a lock-exchange two-layer 
situation, the more intense the production of turbulent mixing by instabilities will be 
with the increased shear (Baines 1995). 

Benjamin (198 1) proves that unidirectional self-similar flow through a contraction 
with vertical sidewalls maximizes the transfer of momentum or ' flow-force'. From this 
it follows directly that the decoupled exact solutions found also do so. It is not known 
by the present author if the coupled flow cases have this property, nor if it applies to 
other than vertical sidewall arrangements. In the latter case, the layers in a group will 
in any case not reduce their thickness as if the group consisted of a homogeneous layer 
(Wood 1968). Even if it could be proven to be a true theorem for the coupled cases, 
it would not be an attractive basis for numerical computation. The reason is that even 
though the momentum transfer is readily computed and the parameter space for multi- 
layer self-similar flow consists of only two degrees of freedom (i.e. the height of 
shearing interface and the da") the possible blocking of one or more layers makes it 
computationally inefficient to evaluate the loci in the parameter space that are 
compatible with the uncoupled control condition and the requirement that the flow 
cannot go against Bernoulli PE-function gradients upstream of the jumps. 

If there is a sill that coincides with the maximum contraction, it also seems possible 
to find exact decoupled solutions. An example from the strait Oxdjupet in the 
Stockholm archipelago is given in figure 7. In addition to the sea level condition to 
make one layer stagnant at a time, the lower group of active layers must also be 
bounded by stagnant layers that are blocked off by the sill. In spite of the basic 
similarity with the non-sill case, there are sufficient complications to motivate that the 
sill case merits a separate treatment (Armi & Farmer 1986; Farmer & Armi 1986). 

One may ask if the solutions with h-roots greater than 2/3 will occur in real flow 
situations. These roots correspond to wave modes considerably slower than the fastest 
one. There is certainly no mathematical reason to exclude them and laboratory 
experiments also indicate that they exist (L. Armi, personal communication). They 
appear, however, in flow situations with weak driving potential (similar stratification 
in both reservoirs) which are such slowly flowing active layers that they are difficult to 
discriminate from the stagnant adjacent layers. 
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FIGURE 7. Isopychs (n,) observed July 13, 1995, at the strait Oxdjupet in the Stockholm 
archipelago. The maximum depth is about 19 m. The most distant observations from the sill are 
approximately one nautical mile to either side. Allowing one metre for a stagnant layer (shown cross- 
hatched around the 2.5-isopych), the height reduction of the upper layers is 0.76 and for the lower 
layers 0.71. The theoretically expected 2/3-ratio would probably be attained more closely if the most 
distant measurements were even farther apart. This indicates thus that decoupled solutions may be 
extended to silled straits. 

As has been touched upon above, it is certainly possible to loosen the condition that 
the Bernoulli PE-functions of the two basins intersect at only one point, permitting a 
series of groups flowing in alternate and opposing directions as long as the stagnant 
layers protrude to the control point and all the groups stay decoupled. The surface 
elevation in the contraction would still be possible to deduce according to (20) and the 
suggested procedure could be pursued from the top toward the bottom. The coupled 
cases become more complicated, however. The two-layer approximation gives a partial 
explanation for why two groups of contraflowing layers behave as if they were 
homogeneous (Wood 1968; Benjamin 1981) provided that the sidewalls are vertical. 
Pursuing the same approach for several groups leads into recursive adaption numerical 
schemes. If one succeeded in solving these, the multi-layer problem would be reduced 
to instances of few-layer problems for which only a limited number of exact solutions 
are known, for example three layers (Long 1977). This is the basic rationale for 
restraining the stratification to Bernoulli PE-functions that intersect only at one point. 
At present only the exact decoupled cases are analytically tractable, with a possible 
extension to loosely coupled cases where the two-layer approximation gives an 
approximate numerical solution. This provides only a limited set of solutions, however. 
The corresponding solutions to fill the gaps must wait until the theory for more than 
two layers is better developed. A general three-layer solution is still in high demand 
(Pratt 1990). 

6. Summary 
For bidirectional quasi-stationary exchange through a contraction without a sill 

between two reservoirs with prespecified density profiles, self-similar solutions to the 
shallow water equations that are compatible with the control criterion (Benton 1954; 
Baines 1988) are computed. This has been achieved by first subdividing the assumed 
continuous density distribution into a numerically tractable number of assumed 
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homogeneous layers and then separating the full bidirectional solution into two groups 
of opposing layers that are completely decoupled if physically vertically bounded by a 
stagnant layer that protrudes into the control section. If the stagnant layer is depleted 
there, so that a non-stagnant case occurs, this situation may be approximately solved 
numerically by a transformation into an equivalent two-layer flow regime. 

The control section that controls the dominant fastest propagating wave mode, 
determined by the density distribution of the two reservoirs, coincides with the 
narrowest part of the connecting sound between the two basins. The entire exchange 
flow may be calculated for discrete sea level differences that make each of the layers 
stagnant one at a time. This means that from an application point of view, the 
functional relation may be computed between the barotropic and the baroclinic 
component for a suite of exchange flows that is driven by the gravitational potential 
of the prespecified density distribution in the reservoirs. This presupposes that the 
Bernoulli PE-function profile in one basin is strictly smaller than that in the other when 
there is no sea level difference between the basins. This constraint limits the exchange 
to only two groups of layers going in opposite directions. In combination with a 
functional description response of the basins to the exchanged properties, this serves 
as a basis for an exchange model free from empirical parameters. For both the upper 
and lower groups of layers there appear as many height reduction factor (A)  solutions 
as there are active layers. These are found in a range between 2/3 and 1. The fastest 
wave mode corresponds to a height reduction factor 2/3. If this mode is suppressed by 
the downstream stratification condition, the second fastest mode will be the one 
controlled. If this one in turn is drowned by an incident wave from the downstream 
side, the third takes over and so forth. A non-control regime occurs when the Bernoulli 
PE-functions of the two reservoirs are so similar that the flow cannot reach the 
downstream reservoir for any of reduction factors. In such a non-control case the 
interfaces are completely horizontal when passing the maximum contraction. 

I thank Anders Stigebrandt for suggesting this problem to me and for many inspiring 
discussions. He also has contributed constructive criticism to the improvement of the 
manuscript as have Laurence Armi and three anonymous reviewers. Leif Lundgren has 
drawn the figures and Ida Engqvist has assisted with language correction. This project 
has been financially supported by the Swedish Environmental Protection Agency. 
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